Stability of Error Bounds for Semi-infinite Convex Constraint Systems

نویسندگان

  • Huynh van Ngai
  • Alexander Kruger
  • Michel Théra
چکیده

In this paper, we are concerned with the stability of the error bounds for semi-infinite convex constraint systems. Roughly speaking, the error bound of a system of inequalities is said to be stable if all its “small” perturbations admit a (local or global) error bound. We first establish subdifferential characterizations of the stability of error bounds for semi-infinite systems of convex inequalities. By applying these characterizations, we extend some results established by Azé & Corvellec [3] on the sensitivity analysis of Hoffman constants to semi-infinite linear constraint systems. Mathematics Subject Classification: 49J52, 49J53, 90C30, 90C34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Error Bounds for Convex Constraint Systems in Banach Spaces

This paper studies stability of error bounds for convex constraint systems in Banach spaces. We show that certain known sufficient conditions for local and global error bounds actually ensure error bounds for the family of functions being in a sense small perturbations of the given one. A single inequality as well as semi-infinite constraint systems are considered.

متن کامل

Stability of error bounds for convex constraint

5 This paper studies stability of error bounds for convex constraint systems 6 in Banach spaces. We show that certain known sufficient conditions for local 7 and global error bounds actually ensure error bounds for the family of func8 tions being in a sense small perturbations of the given one. A single inequality 9 as well as semi-infinite constraint systems are considered. 10 Mathematics Subj...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Solving semi-infinite programs by smoothing projected gradient method

In this paper, we study a semi-infinite programming (SIP) problem with a convex set constraint. Using the value function of the lower level problem, we reformulate SIP problem as a nonsmooth optimization problem. Using the theory of nonsmooth Lagrange multiplier rules and Danskin’s theorem, we present constraint qualifications and necessary optimality conditions. We propose a new numerical meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010